metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2,2'-[(2-aminoethyl)azanediyl]diethanaminium} di-µ-sulfido-bis-(disulfidogermanate)

Chao Xu,^a Jing-Jing Zhang,^a Taike Duan,^a Qun Chen^b and Qian-Feng Zhang^{a,b*}

^aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and ^bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China Correspondence e-mail: zhangqf@ahut.edu.cn

Received 8 December 2011; accepted 9 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.042; wR factor = 0.111; data-to-parameter ratio = 18.6.

In the title compound, $(C_6H_{20}N_4)_2[Ge_2S_6]$, the dimeric $[Ge_2S_6]^{4-}$ anion is formed by two edge-sharing GeS₄ tetrahedral units. The average terminal and bridging Ge-S bond lengths are 2.158 (14) and 2.276 (6) Å, respectively. The anions and the diprotonated ammonium cations are organized into a three-dimensional network by N-H···S and N-H···N hydrogen bonds.

Related literature

For background to main group metal-chalcogenide compounds, see: Bowes & Ozin (1996); Zheng *et al.* (2002, 2005). For a related structure, see: Jia *et al.* (2005).

a = 25.2845 (17) Å

b = 7.3173 (4) Å

c = 16.6001 (9) Å

Experimental

Crystal data $(C_6H_{20}N_4)_2[Ge_2S_6]$ $M_r = 634.06$ Monoclinic, C2/c $\beta = 122.637 (4)^{\circ}$ $V = 2586.3 (3) Å^{3}$ Z = 4Mo K α radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.616, T_{max} = 0.677$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.111$ S = 1.032952 reflections 159 parameters $\mu = 2.83 \text{ mm}^{-1}$ T = 296 K $0.19 \times 0.16 \times 0.15 \text{ mm}$

11988 measured reflections 2952 independent reflections 2243 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} & \Delta\rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3} \\ & \Delta\rho_{\rm min} = -1.08 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N\cdots S3^{i}$	0.85 (4)	2.61 (5)	3.445 (4)	170 (4)
$N2 - H2N \cdot \cdot \cdot S2$	0.73 (8)	2.91 (8)	3.470 (4)	136 (6)
$N2 - H2N \cdot \cdot \cdot S3$	0.73 (8)	2.89 (8)	3.514 (4)	145 (7)
$N2 - H3N \cdot \cdot \cdot N3^{ii}$	0.99 (4)	1.95 (4)	2.897 (5)	159 (4)
$N4 - H6N \cdot \cdot \cdot S3^{i}$	0.90 (5)	2.44 (5)	3.311 (4)	163 (4)
N4−H7 <i>N</i> ···S2 ⁱⁱⁱ	0.87 (4)	2.50 (4)	3.357 (4)	170 (3)
$N4 - H8N \cdot \cdot \cdot S3^{iv}$	0.90 (4)	2.47 (4)	3.362 (4)	171 (3)

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$, (ii) x, y + 1, z; (iii) $x, -y + 1, z - \frac{1}{2}$, (iv) $x, -y, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2497).

References

Bowes, C. L. & Ozin, G. A. (1996). Adv. Mater. 8, 13-18.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874–881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805-2806.

Zheng, N., Bu, X., Wang, B. & Feng, P. (2002). Science, 298, 2366-2370.

supplementary materials

Acta Cryst. (2012). E68, m154 [doi:10.1107/S160053681200092X]

Bis{2,2'-[(2-aminoethyl)azanediyl]diethanaminium} di-µ-sulfido-bis(disulfidogermanate)

C. Xu, J.-J. Zhang, T. Duan, Q. Chen and Q.-F. Zhang

Comment

There has been an extensive interest in main group metal–chalcogenide compounds because of their unique structures and potential applications in areas such as semiconductors and photocatalysis (Zheng *et al.*, 2005). To synthesize related compounds, many attempts have been made to the reaction of metal-sulfur fluxes at high temperature (Bowes & Ozin, 1996). Compared to the harsh conditions, solvothermal synthesis in a lower temperature is the most efficient choice for the synthesis of metal–chalcogenide complexes (Zheng *et al.*, 2002). In this paper, we report the hydrothermal synthesis and crystal structure of a new thiogermanate, [taeaH₂]₂[Ge₂S₆] (taea = tris(2-aminoethyl)amine).

The title compound is composed of a dimeric $[Ge_2S_6]^{4-}$ anion and two diprotonated $[taeaH_2]^{2+}$ cations (Fig. 1). The dimeric anion is constructed by two edge-sharing tetrahedral GeS₄ units, forming a planar four-membered Ge₂S₂ ring. The S—Ge—S angles from the tetrahedral unit display a range from 94.68 (3) to 115.75 (4)°. The Ge—S—Ge angle in the four-membered Ge₂S₂ ring is 85.32 (3)°. The average bond length of Ge—S_t (terminal bond) is shorter than that of Ge—S_b (bridging bond) by 0.118 Å. The bond parameters in the title compound are similar to those found in the other thiogermmanates (Jia *et al.*, 2005). Two terminal amine groups from the taea molecule are protonated to balance negative charges of the dimeric anion. The anions and cations are organized into an extended three-dimensional network by N—H···N and N—H···S hydrogen bonds (Fig. 2 and Table 1).

Experimental

 GeO_2 (104.6 mg, 1.0 mmol) and S (128.0 mg, 4.0 mmol) were mixed with tris(2-aminoethyl)amine (2.0569 g) in a 23 ml Teflon-lined stainless steel autoclave and stirred for 20 min. The vessel was sealed and heated to 190°C for 6 d and then cooled to room temperature. Colorless flake crystals were obtained and air dried. The yield based on GeO₂ is about 40%. Analysis, calculated for C₁₂H₄₀Ge₂N₈S₆: C 22.7, H 6.36, N 17.7%; found: C 22.5, H 6.31, N 17.6%.

Refinement

C-bound H atoms were positioned geometrically and refined as riding atoms. with C—H = 0.97 (CH₂) Å and with $U_{iso}(H)$ = 1.2 $U_{eq}(C)$. N-bound H atoms were located from a difference Fourier map and refined isotropically.

Figures

Fig. 1. The structure of the title compound, showing displacement ellipsoids at the 50% probability level.

Fig. 2. Packing diagram of the title compound. Dashed lines denote hydrogen bonds.

Bis{2,2'-[(2-aminoethyl)azanediyl]diethanaminium} di-µ-sulfido-bis(disulfidogermanate)

F(000) = 1312 $D_{\rm x} = 1.628 \text{ Mg m}^{-3}$

 $\theta = 2.9-26.8^{\circ}$ $\mu = 2.83 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.19 \times 0.16 \times 0.15 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3750 reflections

Crystal a	lata
-----------	------

$(C_6H_{20}N_4)_2[Ge_2S_6]$
$M_r = 634.06$
Monoclinic, C2/c
Hall symbol: -C 2yc
<i>a</i> = 25.2845 (17) Å
<i>b</i> = 7.3173 (4) Å
c = 16.6001 (9) Å
$\beta = 122.637 \ (4)^{\circ}$
$V = 2586.3 (3) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD diffractometer	2952 independent reflections
Radiation source: fine-focus sealed tube	2243 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.051$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -28 \rightarrow 32$
$T_{\min} = 0.616, T_{\max} = 0.677$	$k = -9 \rightarrow 9$
11988 measured reflections	$l = -21 \rightarrow 20$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0694P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 1.05 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -1.08 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Ge10.046082 (16)0.40953 (4)0.47830 (2)0.02S1-0.02392 (4)0.64364 (11)0.40812 (6)0.02S20.14075 (4)0.50236 (13)0.53795 (7)0.03S30.01711 (4)0.17923 (11)0.38125 (6)0.03N10.16919 (14)0.0976 (3)0.2936 (2)0.02N20.10013 (18)0.4325 (5)0.3045 (3)0.03	516 (14) 84 (2) 68 (2) 22 (2) 91 (7) 75 (8) 2 (12)* (3)*
S1-0.02392 (4)0.64364 (11)0.40812 (6)0.02S20.14075 (4)0.50236 (13)0.53795 (7)0.03S30.01711 (4)0.17923 (11)0.38125 (6)0.03N10.16919 (14)0.0976 (3)0.2936 (2)0.02N20.10013 (18)0.4325 (5)0.3045 (3)0.03	84 (2) 68 (2) 22 (2) 91 (7) 75 (8) 2 (12)* (3)*
S2 0.14075 (4) 0.50236 (13) 0.53795 (7) 0.03 S3 0.01711 (4) 0.17923 (11) 0.38125 (6) 0.03 N1 0.16919 (14) 0.0976 (3) 0.2936 (2) 0.02 N2 0.10013 (18) 0.4325 (5) 0.3045 (3) 0.03	68 (2) 22 (2) 91 (7) 75 (8) 2 (12)* (3)*
S30.01711 (4)0.17923 (11)0.38125 (6)0.03N10.16919 (14)0.0976 (3)0.2936 (2)0.02N20.10013 (18)0.4325 (5)0.3045 (3)0.03	22 (2) 91 (7) 75 (8) 2 (12)* (3)*
N10.16919 (14)0.0976 (3)0.2936 (2)0.02N20.10013 (18)0.4325 (5)0.3045 (3)0.03	91 (7) 75 (8) 2 (12)* (3)*
N2 0.10013 (18) 0.4325 (5) 0.3045 (3) 0.03	75 (8) 2 (12)*
	2 (12)*
H1N 0.074 (2) 0.358 (6) 0.263 (3) 0.04	(3)*
H2N 0.096 (3) 0.399 (9) 0.342 (6) 0.11	(\mathbf{J})
H3N 0.0834 (19) 0.559 (6) 0.295 (3) 0.04	3 (11)*
N3 0.08225 (18) -0.1798 (5) 0.3167 (3) 0.04	11 (8)
H4N 0.061 (2) -0.179 (7) 0.340 (4) 0.06	2 (17)*
H5N 0.066 (2) -0.111 (6) 0.277 (3) 0.04	0 (14)*
N4 0.09320 (16) 0.0946 (5) 0.0738 (2) 0.034	44 (7)
H6N 0.070 (2) 0.112 (6) 0.100 (4) 0.05	4 (14)*
H7N 0.1009 (18) 0.199 (6) 0.058 (3) 0.03	8 (11)*
H8N 0.0691 (18) 0.031 (5) 0.019 (3) 0.03	4 (10)*
C1 0.19669 (17) 0.2513 (5) 0.3611 (3) 0.03	53 (8)
H1A 0.2403 0.2653 0.3812 0.04	2*
H1B 0.1957 0.2233 0.4174 0.04	2*
C2 0.16258 (18) 0.4298 (5) 0.3188 (3) 0.03	70 (9)
H2A 0.1874 0.5293 0.3610 0.04	4*
H2B 0.1584 0.4496 0.2578 0.04	4*
C3 0.18437 (18) -0.0753 (5) 0.3472 (3) 0.03	75 (9)
H3A 0.2283 -0.0737 0.3987 0.04	5*
H3B 0.1784 -0.1755 0.3048 0.04	5*
C4 0.14468 (19) -0.1096 (5) 0.3891 (3) 0.03	96 (9)
H4A 0.1659 -0.1972 0.4409 0.04	8*
H4B 0.1401 0.0035 0.4152 0.04	8*
C5 0.19364 (17) 0.0959 (5) 0.2311 (3) 0.03	42 (8)
H5A 0.2350 0.0400 0.2652 0.04	1*
H5B 0.1983 0.2209 0.2165 0.04	1*
C6 0.15200 (18) -0.0063 (5) 0.1386 (3) 0.03	72 (8)
H6A 0.1745 -0.0252 0.1070 0.04	5*

supplementary materials

H6B	0.1419	-0.1252	0.152	6 0.0)45*	
Atomic displace	ement parameter	$rs(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ge1	0.0285 (2)	0.0261 (2)	0.0180 (2)	0.00119 (14)	0.01058 (16)	0.00061 (12)
S1	0.0353 (5)	0.0292 (4)	0.0177 (4)	0.0043 (3)	0.0123 (4)	0.0038 (3)
S2	0.0288 (5)	0.0419 (6)	0.0347 (5)	-0.0023 (4)	0.0138 (4)	0.0004 (4)
S3	0.0412 (5)	0.0293 (5)	0.0231 (4)	0.0015 (4)	0.0153 (4)	-0.0034 (3)
N1	0.0328 (16)	0.0249 (14)	0.0219 (14)	0.0012 (12)	0.0097 (12)	0.0013 (11)
N2	0.045 (2)	0.036 (2)	0.0295 (18)	0.0025 (16)	0.0191 (17)	0.0009 (15)
N3	0.047 (2)	0.043 (2)	0.035 (2)	0.0016 (17)	0.0230 (18)	-0.0023 (16)
N4	0.0356 (18)	0.0358 (18)	0.0248 (16)	0.0000 (15)	0.0116 (15)	0.0001 (14)
C1	0.0354 (19)	0.0322 (19)	0.0274 (18)	-0.0033 (15)	0.0097 (15)	-0.0042 (14)
C2	0.041 (2)	0.0298 (19)	0.037 (2)	-0.0050 (16)	0.0187 (18)	-0.0034 (15)
C3	0.044 (2)	0.0283 (19)	0.039 (2)	0.0064 (16)	0.0216 (18)	0.0079 (15)
C4	0.050 (2)	0.036 (2)	0.029 (2)	-0.0008 (17)	0.0186 (18)	0.0017 (15)
C5	0.0314 (19)	0.038 (2)	0.0273 (18)	0.0032 (15)	0.0119 (16)	0.0041 (14)
C6	0.044 (2)	0.035 (2)	0.0268 (18)	0.0076 (16)	0.0151 (16)	-0.0008 (15)
Geometric para	ameters (Å, °)					
Ge1—S2		2.1482 (10)	N4—	H8N	0.90	(4)
Ge1—S3		2.1677 (9)	C1—	C2	1.51	4 (5)
Ge1—S1 ⁱ		2.2715 (9)	C1—	H1A	0.97	/00
Ge1—S1		2.2804 (9)	C1—	H1B	0.97	/00
N1—C5		1.466 (5)	C2—	H2A	0.97	/00
N1—C1		1.471 (4)	C2—	H2B	0.97	/00
N1—C3		1.473 (4)	C3—	C4	1.51	9 (6)
N2—C2		1.465 (5)	C3—	H3A	0.97	000
N2—H1N		0.85 (4)	C3—	H3B	0.97	000
N2—H2N		0.73 (8)	C4—	H4A	0.97	000
N2—H3N		0.99 (4)	C4—	H4B	0.97	00
N3—C4		1.467 (5)	C5—	C6	1.51	1 (5)
N3—H4N		0.81 (5)	C5—	H5A	0.97	00
N3—H5N		0.75 (5)	C5—	H5B	0.97	00
N4—C6		1.479 (5)	C6—	H6A	0.97	00
N4—H6N		0.90 (5)	C6—	H6B	0.97	00
N4—H7N		0.87 (4)				
S2—Ge1—S3		115.74 (4)	N2—	C2—C1	112.	4 (3)
S2—Ge1—S1 ⁱ		112.57 (4)	N2—	C2—H2A	109	.1
S3—Ge1—S1 ⁱ		110.36 (4)	C1—	C2—H2A	109	.1
S2—Ge1—S1		111.28 (4)	N2—	C2—H2B	109	.1
S3—Ge1—S1		110.26 (3)	C1—	С2—Н2В	109	.1
S1 ⁱ —Ge1—S1		94.69 (3)	H2A-	C2H2B	107	.9
Ge1 ⁱ —S1—Ge1		85.31 (3)	N1—	C3—C4	113.	4 (3)
C5—N1—C1		109.8 (3)	N1—	С3—Н3А	108	9
C5—N1—C3		110.4 (3)	C4—	С3—НЗА	108	.9

C1—N1—C3	109.5 (3)	N1—C3—H3B	108.9
C2—N2—H1N	116 (3)	С4—С3—Н3В	108.9
C2—N2—H2N	120 (6)	НЗА—СЗ—НЗВ	107.7
H1N—N2—H2N	94 (6)	N3—C4—C3	111.6 (3)
C2—N2—H3N	112 (2)	N3—C4—H4A	109.3
H1N—N2—H3N	113 (4)	C3—C4—H4A	109.3
H2N—N2—H3N	101 (5)	N3—C4—H4B	109.3
C4—N3—H4N	108 (4)	C3—C4—H4B	109.3
C4—N3—H5N	109 (3)	H4A—C4—H4B	108.0
H4N—N3—H5N	102 (5)	N1C5C6	113.3 (3)
C6—N4—H6N	112 (3)	N1—C5—H5A	108.9
C6—N4—H7N	111 (3)	С6—С5—Н5А	108.9
H6N—N4—H7N	109 (4)	N1—C5—H5B	108.9
C6—N4—H8N	110 (2)	С6—С5—Н5В	108.9
H6N—N4—H8N	107 (4)	H5A—C5—H5B	107.7
H7N—N4—H8N	107 (4)	N4—C6—C5	111.6 (3)
N1—C1—C2	112.9 (3)	N4—C6—H6A	109.3
N1—C1—H1A	109.0	С5—С6—Н6А	109.3
C2—C1—H1A	109.0	N4—C6—H6B	109.3
N1—C1—H1B	109.0	С5—С6—Н6В	109.3
C2—C1—H1B	109.0	H6A—C6—H6B	108.0
H1A—C1—H1B	107.8		

Symmetry codes: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H1N····S3 ⁱⁱ	0.85 (4)	2.61 (5)	3.445 (4)	170 (4)
N2—H2N…S2	0.73 (8)	2.91 (8)	3.470 (4)	136 (6)
N2—H2N…S3	0.73 (8)	2.89 (8)	3.514 (4)	145 (7)
N2—H3N····N3 ⁱⁱⁱ	0.99 (4)	1.95 (4)	2.897 (5)	159 (4)
N4—H6N····S3 ⁱⁱ	0.90 (5)	2.44 (5)	3.311 (4)	163 (4)
N4—H7N····S2 ^{iv}	0.87 (4)	2.50 (4)	3.357 (4)	170 (3)
N4—H8N····S3 ^v	0.90 (4)	2.47 (4)	3.362 (4)	171 (3)
	1 (1) 1/2	1/2		

Symmetry codes: (ii) -x, y, -z+1/2; (iii) x, y+1, z; (iv) x, -y+1, z-1/2; (v) x, -y, z-1/2.

Fig. 1

